

Edexcel (B) Biology A-level 6.7 - Response to infection

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What is an antigen?

What is an antigen?

Cell-surface molecule can stimulate immune response.

Usually (glyco)protein, sometimes (glyco)lipid or polysaccharide.

Immune system recognises as "self" or "non-self" = enables identification of cells from other organisms of same species, pathogens, toxins & abnormal body cells.

Outline the process of inflammation.

Outline the process of inflammation.

- 1. Damaged vessels release histamines, causing vasodilation.
- 2. Blood flow & permeability of blood vessels increase.

DOfSPMTEducation

3. White blood cells & plasma into the infected tissue.

www.pmt.education

Name the 2 types of white blood cell involved in phagocytosis.

Name the 2 types of white blood cell involved in phagocytosis.

Neutrophils

Macrophages (can become antigen-presenting cells)

How does phagocytosis destroy pathogens?

How does phagocytosis destroy pathogens?

- 1. Phagocyte moves towards pathogen via chemotaxis.
- 2. Phagocyte engulfs pathogen via endocytosis to form a **phagosome**.
- 3. Phagosome fuses with lysosome (**phagolysosome**).
- 4. Lysozymes digest pathogen.
- 5. Phagocyte absorbs the products from pathogen hydrolysis.

Explain the role of antigen-presenting cells (APCs).

Explain the role of antigen-presenting cells (APCs). Macrophage displays antigen from pathogen on its surface (after hydrolysis in phagocytosis). Enhances recognition by T_{μ} cells, which cannot directly interface with pathogens/ antigens in body fluid.

DOG PMTEducation

www.pmt.education

Give 2 differences between specific and nonspecific immune responses.

- Give 2 differences between specific and nonspecific immune responses. **Nonspecific** (inflammation, phagocytosis) = same for all pathogens.
- **Specific** (B & T lymphocytes) = complementary pathogen.
- **Nonspecific** = immediate.

```
Specific = time lag.
```


Name the 2 types of specific immune response.

Name the 2 types of specific immune response.

Cell-mediatedHumoral

Outline the process of the cell-mediated

response.

Outline the process of the cell-mediated response.

- 1. **Complementary** T_H lymphocytes bind to foreign antigen on APC.
- 2. Stimulates:
- a. Clonal expansion of complementary T_H cells (rapid mitosis): become memory cells or trigger humoral response.
- b. Clonal expansion of **cytotoxic T cells** (T_c) : secrete enzyme **perforin** to destroy infected cells.

Outline the process of the humoral

response.

Outline the process of the humoral response.

- 1. **Complementary** T_H lymphocytes bind to foreign antigen on antigen-presenting T cells.
- 2. Release cytokines that stimulate clonal expansion (rapid mitosis) of **complementary B lymphocytes**.
- 3. B cells differentiate into plasma cells.
- 4. Plasma cells secrete **antibodies** with complementary variable region to antigen.

What is an antibody? Describe its structure.

What is an antibody? Describe its structure.

Proteins secreted by plasma cells.

Quaternary structure: 2 'light chains' held by

disulfide bridges, 2 longer 'heavy chains'.

Binding sites on variable region of light chains have

specific tertiary structure complementary to an antigen.

The rest of the molecule is known as the **constant region**.

www.pmt.education

D PMTEducation

How do antibodies lead to the destruction of a pathogen?

How do antibodies lead to the destruction of a pathogen?

- Formation of antigen-antibody complex results in agglutination.
- Activation of complement.
- Opsonisation (marks microbes for phagocytes).

 $\mathbf{\mathbf{D}}$

PMTEducation

• Precipitation/neutralisation (makes toxins insoluble).

www.pmt.education

What are memory cells?

What are memory cells?

Specialised T_H / B cells produced from primary immune response.

Remain in low levels in the blood.

Can divide very rapidly by mitosis if organism encounters the same pathogen again.

Contrast the primary and secondary immune response.

Contrast the primary and secondary immune response. secondary response:

- Faster rate of antibody production.
- Shorter time lag between exposure & antibody production.
- Higher concentration of antibodies.
- Antibody level remains higher after the secondary response.
- Pathogen usually destroyed before any symptoms.

Compare passive and active immunity.

Compare passive and active immunity.

Both involve antibodiesCan both be natural or artificial

Give examples of passive and active immunity.

Give examples of passive and active immunity. **Passive natural:** antibodies in breast milk/ across placenta. **Passive artificial**: anti-venom, needle stick injections. Active natural: humoral response to infection. Active artificial: vaccination.

D PMTEducation

www.pmt.education

Contrast passive and active immunity.

Contrast passive and active immunity.

Passive	Active
No memory cells & antibodies not replaced when broken down = short-term	Memory cells produced = long-term
Immediate	Time lag
Antibodies from external source	Lymphocytes produce antibodies
Direct contact with antigen not necessary	Direct contact with antigen necessary

Explain the principles of vaccination.

Explain the principles of vaccination.

- 1. Vaccine contains dead/ inactive form of a pathogen or antigen.
- 2. Triggers primary immune response.
- 3. Memory cells are produced and remain in the bloodstream, so secondary response is rapid & produces higher concentration of antibodies.
- 4. Pathogen is destroyed before it causes symptoms.

What is herd immunity?

What is herd immunity?

Vaccinating 80-90% of population reduces available carriers of the pathogen to control disease transmission.

Protects individuals who have not been vaccinated e.g. those with a weak immune system.

